BASIC PHYSICS OF RADIATION DETECTORS

- Interactions of particles with matter
- Some basics of detectors

Alison Lister

University of British Columbia

Interactions of particles with matter

- Introduction
- Heavy charged particles
- Electrons and positrons
- Photons
- Electromagnetic showers
- Strong interactions of hadrons

Basic Types of Detectors

- Ionisation detectors
- Cherenkov detectors
- Scintillation detectors (covered in another talk)
- Semi-conductor detectors (covered in another talk)
- Calorimeters (covered in another talk)

Suggested references:

- W. Leo, Techniques for Nuclear and Particle Physics Experiments
- The particle Detector Brief Book <u>http://rkb.home.cern.ch/rkb/titleD.</u> <u>html</u>

OVERALL INTRODUCTION

- Sub-atomic particles involved in particle and nuclear physics are
 - Too small to be observed visually
 - Their detection is based on their interactions with matter
 - In general: based on some energy loss of a particle which is picked up by some reason, thus
 inferring that a particle crossed through
- The development of particle detectors (as well as accelerators) played a leading role in allowing the development of particle and nuclear physics
 - Geiger counter
 - Cloud chamber (C. T. Wilson, prix Nobel 1927)
 - bubble chamber (D. Glasser, prix Nobel 1960)
 - Wire chamber (G. Chapark, prix Nobel 1992)
- Applications of particle detectors are everywhere
 - Medicine, biology, condensed matter physics, radiation protection, defence,...
- Detector physics really is multi-disciplinary
 - Particle and nuclear physics
 - Condensed matter physics, thermodynamics, chemistry, electronics, optics,...
 - Engineering (actually making the thing work)

See previous lecture

- The main principle of particle detector
 - Measure the energy loss of a particle in a detection medium
- 3 of the 4 forces are relevant
 - EM, strong, weak
- Particles that are sufficiently stable to be detected can be grouped into the interactions they experience

Particle	EM	Weak	Strong
Charged leptons (electron, muon, tau)	\checkmark	\checkmark	
Neutral leptons (neutrinos)		\checkmark	
Charged hadrons (protons, π ^{+,} π ⁻ ,)	\checkmark	\checkmark	\checkmark
Neutral hadrons (neutron, $\pi^0,$)		\checkmark	\checkmark
Photons	\checkmark		

- What effects can be induced in a material by a given force?
 - Electromagnetic
 - Interaction between a charged particle and
 - Atomic electrons: excitation, ionisation
 - Charged particles of the nucleus: elastic or inelastic scattering, e⁺e⁻ pair production, bremsstrahlung
 - Interaction between a photon and
 - Atomic electron: photo-electric effect, Compton scattering
 - Particle of the nucleus: e⁺e⁻ pair production
 - Coherent radiation of charged particles
 - Cherenkov radiation and transition radiation
 - Weak
 - Negligible in all cases except for detecting neutrinos
 - Strong
 - Dominant for high energy hadrons and nuclei
- General rule of thumb
 - At low energy: interactions with atomic electrons dominate (excitation, ionisation)
 - At high energy: interactions with nuclei become important

- The interaction probability (p) depends on the density of the medium (p) and the thickness of the medium (d)
 - Take a target with N₂ total particles and a surface S₂
 - Cross section (σ): probability of interaction of an incident particle per unit surface
 - Interaction probability: $p = \sigma N_2 / S_2$
 - Interaction rate: interaction probability of an incident particle times the rate of incident particles
 - $T = \phi S_1 \sigma N_2 / S_2$
 - Flux (φ): number of incident particles per unit surface per unit time
 - S₁: surface of the beam
 - Define: $S_b = N_2/S_2 = \rho d$: surface density of the target
 - Number of target particles per unit surface (units: kg/m²)
 - 2 targets with same surface density will have the same interaction cross section
 - $S_b = (N_A \rho d) / A$

- Mean free path: λ
 - Mean distance between two successive interactions
 - Calculate the probability that a particle doesn't have an interaction after having traversed a length x in the medium
 - Interaction probability per unit distance
 - $w = p/d = N_A (\sigma/A) \rho$
 - Interaction probability between x et x+dx
 - $w dx = N_A (\sigma / A) \rho dx$
 - Probability to not have an interaction between x et x+dx
 - P(x+dx) = P(x) (1-w dx)
 - P(x) + P'(x)dx = P(x) P(x) w dx
 - P'(x) = -wP(x)

•
$$P(x) = e^{-wx}$$

$$\lambda = \frac{\int x P(x) dx}{\int P(x) dx} = \frac{1}{w} = \frac{1}{N_A(\sigma/A) \cdot \rho}.$$
 which gives us

$$P(x) = e^{-\frac{x}{\lambda}}.$$

HEAVY CHARGED PARTICLES

Heavy charged particles

- i.e. all charged particles except electrons et positrons
- At low energy (keV to MeV)
 - Energy loss dominated by EM interactions with atomic electrons
 - Size of an atom ~10⁻¹⁰ m
 - Size of a nucleus ~10⁻¹⁴ m
 - The interaction results in a transfer of part of the energy of the incident particles into kinetic energy of the atom that will either get *excited* (electrons move to higher orbitals) or *ionised* (electrons break free)
 - The physics behind this is the same in both cases, just differences in the amount of energy transferred
- The interaction cross section is very small (~10⁻¹⁷ cm²) but the high atomic density ($N_A = 6 \ 10^{23} \ g^{-1}$) of most materials results in an important energy loss, even for relatively thin layers
 - A 10 MeV proton looses all its energy (on average) in 0.25mm of copper
- Sometimes the freed electrons have enough energy to then ionise an electron from from another atom (so-called δ electrons or δ rays)

Energy loss (-dE/dx)

- To describe a material, use the mean energy loss per unit length
 -dE/dx
- Lets try and do a classical calculation of -dE/dx
 - · EM interactions are described by Coulomb's force
 - Calculate the momentum transferred from an incident particle to an atomic electron

$$I = I_{y} = \int_{-\infty}^{+\infty} F_{y} dt = -\int_{-\infty}^{+\infty} \frac{ze^{2}}{4\pi\varepsilon_{0}} \frac{\sin\theta}{r^{2}} \frac{dx}{v} = \int_{-\infty}^{+\infty} \frac{ze^{2}}{4\pi\varepsilon_{0}} \frac{b}{vr^{3}} dx = \int_{-\infty}^{+\infty} \frac{ze^{2}}{4\pi\varepsilon_{0}} \frac{b}{v(x^{2}+b^{2})^{3/2}} dx = -\frac{ze^{2}}{2\pi\varepsilon_{0}vb}$$

• The energy transferred to the electron (in the non-relativistic limit)

$$t_{e} = \frac{I^{2}}{2m_{e}} = \frac{z^{2}e^{4}}{8\pi^{2}\varepsilon_{0}^{2}v^{2}b^{2}m_{e}}$$

Energy loss

- For a uniform electron distribution
 - The number of collisions with an impact parameter between b and b+db in a thickness dx of the material is

$$N_e = 2\pi b \cdot db \cdot dx \cdot \rho \cdot (N_A/A) \cdot Z$$

Which results in an energy transfer

$$dT_e = N_e t_e = \frac{z^2 e^4 Z}{4\pi \varepsilon_0^2 v^2 b m_e} (\rho \cdot N_A / A) \cdot db \cdot dx$$

The energy loss per unit length will thus be

$$-\frac{dE}{dx} = \int_{b_{\min}}^{b_{\max}} dT_e = \frac{Zz^2 e^4}{4\pi\varepsilon_0^2 v^2 m_e} (\rho \cdot N_A / A) \int_{b_{\min}}^{b_{\max}} \frac{db}{b} = \frac{Zz^2 e^4}{4\pi\varepsilon_0^2 v^2 m_e} (\rho \cdot N_A / A) \ln\left(\frac{b_{\max}}{b_{\min}}\right)$$

Energy loss

- Because of the approximations made here we will get an infinite result when $b_{min} = 0$ and $b_{max} = infinite$
- We can solve this by putting limits to the integration region based on physics arguments
 - We consider the mass of the incident particle to be $>> m_e$
 - The maximum change of the speed of the electron will be 2v $t_{e,\max} = \frac{1}{2}m_e(2v)^2 = 2m_ev^2$
 - The energy acquired by the electron cannot exceed
 - $b_{\min} = \frac{ze^2}{4\pi\varepsilon_0 v^2 m}$ • Which corresponds to a minimum to the impact parameter
 - The minimum energy change needs to e enough to excite the atom: i.e. be above the ionisation constant I $-a^2$

$$t_{e,\min} = I$$
 d'où $b_{\max} = \frac{2e}{2\pi\varepsilon_0\sqrt{2m_ev^2I}}$

• We then get

$$-\frac{dE}{dx} = \frac{Zz^2 e^4}{8\pi\varepsilon_0^2 v^2 m_e} \left(\rho \cdot N_A / A\right) \ln\left(\frac{2m_e v^2}{I}\right) = \frac{2\pi Zz^2 r_e^2 m_e c^4}{v^2} \left(\rho \cdot N_A / A\right) \ln\left(\frac{2m_e v^2}{I}\right)$$

Where r_e is the classical electron radius

Energy loss: Bethe-Bloch

Bethe and Bloch did the full QM calculation and got

$$-\frac{dE}{dx} = \frac{2\pi Z z^2 r_e^2 m_e c^2}{\beta^2} \left(\rho \cdot N_A / A\right) \left[\ln \left(\frac{2m_e \gamma^2 v^2 W_{\text{max}}}{I^2} \right) - 2\beta^2 - \delta \right],$$

- δ : the correction for charge density effects
- W_{max} : the maximum energy transferred in a collision

$$W_{\max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma \frac{m_e}{M} + \left(\frac{m_e}{M}\right)^2} \approx 2m_e v^2 \gamma^2 \text{ pour } M \gg 2\gamma m_e$$

Thus

$$-\frac{dE}{dx} \approx \frac{4\pi Z z^2 r_e^2 m_e c^2}{\beta^2} \left(\rho \cdot N_A / A\right) \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I}\right) - \beta^2 - \frac{\delta}{2} \right]$$
$$= \left(4\pi m_e c^2 r_e^2\right) \frac{n_e z^2}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I}\right) - \beta^2 - \frac{\delta}{2} \right]$$
$$= \frac{1}{m_e c^2} \frac{e^4}{4\pi \varepsilon_0^2} \frac{n_e z^2}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I}\right) - \beta^2 - \frac{\delta}{2} \right]$$

• Where *n_e* is the atomic electron density

Bethe-Bloch

- The ionisation constant (I) groups together the global properties of atoms
 - Excitation levels and associated cross sections
 - Difficult to calculate
 - Measured experimentally for different materials
 - Parameterised as a function of the number of electrons (Z)

$$I/Z = \begin{cases} 12 + 7/Z & \text{eV} \quad Z < 13\\ 9.76 + 58.8Z^{-1.19} & \text{eV} \quad Z \ge 13 \end{cases}$$

- The correction for the charge density (δ) is due to the fact that the electric field of the incident particle polarises the atoms close to its trajectory
 - The polarisation reduces the impact of the electric field of the further away electrons (like a screening effect) which reduces the energy loss
 i.e. δ >0
 - The effect becomes larger if the energy of the incident particle increases (longer range electric field) or the density of material increases

Heavy charged particles

• To simplify we can use $K = 4\pi N_A r_e^2 m_e c^2 \approx 0.307075 \text{ MeV} \cdot \text{g}^{-1} \cdot \text{cm}^2$

• We can express -dE/dx in units of energy divided by the surface density

$$-\frac{dE}{\rho dx} = K \frac{z^2}{\beta^2} \frac{Z}{A} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} \right) - \beta^2 - \frac{\delta}{2} \right].$$

- Proportional to z²
 - An α particle looses 4 time more energy than a proton for the same speed in the same medium
 - Proportional to Z/A
 - Z/A ~1/2 pour for most medium except for hydrogen

Energy dependence of-dE/dx

$$-\frac{dE}{\rho dx} = K \frac{z^2}{\beta^2} \frac{Z}{A} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} \right) - \beta^2 - \frac{\delta}{2} \right].$$

- For non-relativistic particles: 1/β² term dominates
 - The particle spends longer closer to the electrons -> the momentum they gain is larger
- This decrease continues to a minimum at $p/mc = \beta \gamma \sim 3 3.5$ (when the particle becomes relativistic)

- · The particles at this minimum are called 'minimally isonising particles'
- The -dE/dx minimum is constant for all particles with the same charge, in the same medium
 - Moreover it's almost constant (1-2 MeV/g/cm²) for most materials
- At high energies ($\beta \sim 1$): -*dE/dx* increases as log $\beta \gamma$, compensated by the density correction
- In a given medium, each particle has a different curve
 - This can be used to identify the type of particle

Energy dependence of-dE/dx

$$-\frac{dE}{\rho dx} = K \frac{z^2}{\beta^2} \frac{Z}{A} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} \right) - \beta^2 - \frac{\delta}{2} \right]$$

Energy loss for different types of particles in ALICE's TPC (Time Projection Chamber)

Bragg Curve

- When entering a dense medium: a particle looses energy, thus slowing down, until it looses all its kinetic energy and stops
 - The slower the particle, the larger the -dE/dx
- The relationship between -dE/dx and the distance travelled in the medium is called the Bragg curve
- The curve increases to a maximum
 - The depth at which the particle gets absorbed is the Bragg peak
- This Bragg peak is exploited in nuclear medicine for radiation treatment in order to minimise the damage to healthy tissue in front of the tumor

Validity of Bethe-Block formula

- Precision of a few % for heavy charged particles in the range from a few MeV to hundreds of GeV
 - At very high energy (TeV): the energy loss by radiation becomes important so additional terms are needed
 - At very low energy (< few MeV): when the speed of particles is comparable to the speed of atomic electrons the formula breaks down completely
- The energy loss process is a statistical (probabilistic) process
 - If the target if very thin: particle by particle variations in -dE/dx become important
 - Results in an asymmetric distribution with a large tail (at high values)
 - These fluctuations are in general linked to δ electrons (which are discreet)
 - Can be roughly parametrised by a Landau distribution

$$L(\lambda) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(\lambda + e^{-\lambda})\right\} \text{ avec } \lambda = \frac{\Delta E - \Delta E^{W}}{\xi}$$

 ΔE : la perte d'énergie dans une épaisseur x

 ΔE^{w} : la perte d'énergie le plus probable dans une épaisseur x

$$\xi = 2\pi N_a r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \rho x$$

LIGHT CHARGED PARTICLES

Electrons and positions (light charged particles)

- Electrons and positrons are light: Need to modify the Bethe-Block formula
 - Masses of incident particles = masses of target particles
 - For electrons: it's the same particle
 - Only need a single interaction to significantly change the direction of the incident electron
 - Makes the trajectory more sinuous and harder to predict
 - Energy loss by radiation (Bremsstrahlung) becomes important
 - $dE/dx_{tot} = dE/dx_{radiation} + dE/dx_{collision}$
 - For energies up to a few MeV: small fraction
 - For a few tens of MeV: energy losses are comparable
 - Above that: Bremsstrahlung dominates

Electrons and positrons

- Need to modify Bethe-Block formula
- Basic interactions
 - Moller scattering ($e^-e^- \rightarrow e^-e^-$)
 - Bhabha scattering (e⁺e⁻→e⁺e⁻)

Using the cross sections for these processes, we get

$$-\frac{dE}{\rho dx} = K \frac{z^2}{\beta^2} \frac{Z}{A} \left[\ln \left(\frac{m_e c^2 \tau \sqrt{\tau + 1}}{\sqrt{2}I} \right) + \frac{F(\tau)}{2} - \frac{\delta}{2} \right]$$

- τ is the kinetic energy of the electron (positron) in units of $m_e c^2$
- $F(\tau)$ is a function that's different for electrons and positrons

Energy loss by radiation (Bremsstrahlung)

- A charged particle looses energy be emission of EM radiation (photon) when its velocity (vector or magnitude) changes
 - Bremsstrahlung: in the electric field of a nucleus
 - Synchrotron radiation: under circular motion
- The radiation emission cross section $d\sigma/dE_{\gamma} \propto 1/m^2$
 - A semi-classical calculation gives

$$\frac{d\sigma}{dE_{\gamma}} \propto 4\alpha \ z^2 Z^2 \left(\frac{e^2}{4\pi\varepsilon_0 m^2 c^2}\right) \frac{1}{E_{\gamma}}$$

- Below ~100 GeV
 - Only electrons and positrons loose non-negligible energy due to radiation

Energy loss by radiation (Bremsstrahlung)

• The spectrum of the emitted photon depends on $1/E_{\gamma}$

$$-\frac{dE}{dx}\Big|_{brem} = \int_{0}^{E} E_{\gamma} p(E_{\gamma}) dE_{\gamma} = N_{a} \frac{\rho}{A} \cdot \int_{0}^{E} E_{\gamma} \frac{d\sigma}{dE_{\gamma}} dE_{\gamma} \propto E$$

For relativistic particles (energy ~ MeV)

$$-\frac{dE}{dx}\bigg|_{brem} = 4\alpha N_a \frac{\rho}{A} Z^2 z^2 r_e^2 E \ln \frac{183}{Z^{-1/3}}$$

- Bremsstrahlung is also emitted in the interaction of the incident electron and the electric field created by the atomic electrons
 - Taken into account by replacing Z^2 by Z(Z+1)
- Energy loss is proportional to E
 - Dominant contribution at high energy
- Critical energy
 - The energy at which the energy loss by radiation equals the energy loss by ionisation

à
$$E = E_c$$
, $-dE/dx|_{brem} = -dE/dx|_{ion}$

Radiation length

We can describe the energy loss as

$$\frac{dE}{dx}\Big|_{brem} = \frac{E}{X_0}, \text{ ou } X_0 = \frac{A}{4\alpha N_a \rho Z(Z+1)r_e^2 \ln \frac{138}{Z^{1/3}}}$$
$$E(x) = E_0 \exp(-x/X_0), \text{ donc } E(X_0) = E_0/e$$

- X_0 is the radiation length
 - After having traversed a distance X₀: On average the electron energy will be reduced by a factor of 1/e because of Bremsstrahlung
 - X_0 is often given in units of surface density (g/cm²), it is then re-defined as

$$X_0 = \rho \cdot X_0(cm) = \frac{A}{4\alpha N_a Z(Z+1) r_e^2 \ln \frac{138}{Z^{1/3}}} g \cdot cm^{-2}$$

PHOTONS

Photons

- Photons are detected through interactions with matter that produce charged particles
 - Photoelectric effect
 - Dominant for $E_I < E_{\gamma} < 100 \text{ keV}$
 - Compton scattering
 - Dominant for $E_{\gamma} \sim 1 \text{ MeV}$
 - e⁺e⁻ pair production
 - Dominant for $E_{\gamma} >> 1$ MeV

- In all of these processes, the photon is either absorbed of scattered by a large angle
 - · A beam of photons will thus keep its energy, but the intensity decreases
 - We talk about attenuation instead of energy loss
 - Attenuation coefficient $\mu = n \sum \sigma_i$ where *n* is the nuclear density
 - Interaction probability in a thickness dx is
 - The beam intensity at *x*+*dx*
- thickness dx is $n \sum_{i} \sigma_{i} \cdot dx = \mu \, dx$ $I(x + dx) = I(x)(1 - \mu dx)$
 - The beam intensity thus decreases exponentially $I(x) = I_0 e^{-\mu x}$

Photoelectric effect

- An atomic electron is freed after having absorbed a photon $T_{e}^{*} E_{g} B_{i}$
 - Where B_i is the binding energy of the electron (which depends on the orbital layer: k,l,m)
 - This process (γ +e⁻ \rightarrow e⁻) is not possible for a free electron
 - Violates momentum conservation
 - If $E_{\gamma} > B_{\kappa}$, the cross section is dominated (80%) by the absorption by electrons in layer k (innermost layer) as the proximity to the nucleus allows easier absorption of the recoil energy

Photoelectric effect

A non-relativistic calculation gives an approximation

$$\sigma_{K} = 4\sqrt{2}\alpha^{4}Z^{5} \left(\frac{m_{e}c^{2}}{E_{\gamma}}\right)^{1/2} \sigma_{Th} \quad \text{où} \ \sigma_{Th} = \frac{8}{3}\pi r_{e}^{2} = 6.65 \cdot 10^{-25} \,\text{cm}^{2}$$

- Where σ_{Th} is the classical Thomson scattering cross section (elastic scattering off free electrons)
 - The dependency on Z^5 and $E_{\gamma}^{-7/2}$ favours the photoelectric effect at low energy and in heavy materials
- At high energy (in the relativistic limit) the dependency goes as $1/E_{\gamma}$
- The electron hole left can be filled by electrons from higher orbitals (e.g. L) which results in
 - Either the emission of an X-ray with energy $B_K B_L$
 - Or the emission of another electron (Auger electron)
 - If $B_K B_L > B_L$ we will get the emission of an electron with $E_{Auger} = B_K 2B_L$

Compton Scattering

- A photon scatters of a quasi-free electron $(E_{\gamma} >> B_i)$
- Cross section is given by the Klein-Nishima formula (obtained from QED)

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 \left(\frac{E_{\gamma}}{E_{\gamma}}\right)^2 \left(\frac{E_{\gamma}}{E_{\gamma}'} + \frac{E_{\gamma}'}{E_{\gamma}} - \sin^2 \theta\right)$$

 $\frac{E_{\gamma}}{E_{\gamma}} = \frac{1}{1 + \varepsilon (1 - \cos \theta)}, \text{ où } \varepsilon = \frac{E_{\gamma}}{m c^2}$

We can show that

• So
$$\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 \frac{1}{\left[1 + \varepsilon \left(1 - \cos\theta\right)\right]^2} \left[1 + \cos^2\theta + \frac{\varepsilon^2 \left(1 - \cos\theta\right)^2}{1 + \varepsilon \left(1 - \cos\theta\right)}\right]$$

• At low energy ($\epsilon \rightarrow 0$) $d\sigma/d\Omega \propto 1 + \cos^2 \theta$ the angular distribution is symmetric

- At high energy $(\varepsilon \to \infty) d\sigma/d\Omega \propto \frac{1}{\varepsilon(1-\cos\theta)}$ the distribution peaks at $\theta=0$
- The energy of the scattered electron is maximal when $\theta = \pi/2$

$$E_e^{\max} = \frac{E_{\gamma}}{1+1/(2\varepsilon)}$$

Φ

Compton Scattering

• Integrating over θ we get

$$\sigma_c^e(\varepsilon) = 2\pi r_e^2 \left\{ \frac{1+\varepsilon}{\varepsilon^2} \left[\frac{2(1+\varepsilon)}{1+2\varepsilon} - \frac{1}{\varepsilon} \ln(1+2\varepsilon) \right] + \frac{1}{\varepsilon} \ln(1+2\varepsilon) - \frac{1+3\varepsilon}{(1+2\varepsilon)^2} \right\}$$

- At high energy $\sigma_c^e(\varepsilon) \propto \ln \varepsilon / \varepsilon$ thus the Compton scattering cross section decreases when the energy of the photon increases
- For an atom with Z atomic electrons
 - The cross section per atom is thus

$$\sigma_c^{atome} = Z \sigma_c^e$$

Pair production

- Also known as photon conversion
- In the EM field of a nucleus, the photon can convert into an e⁺e⁻ pair
 - Same Feynman diagram as Bremsstrahlung (to first order)
 - The interaction threshold is $E_{\gamma} \ge 2m_ec^2 + 2\frac{m_e}{M_N}c^2$
 - This process cannot happen in vacuum (momentum conservation)
 - But not much energy is carried by the nucleus (~1 MeV for large nuclei)

Pair production

- The cross section
 - At low energy

$$\sigma_{paire} = 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{2E_{\gamma}}{m_e c^2} - \frac{109}{54} \right) = 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln 2\varepsilon - \frac{109}{54} \right) \quad \text{cm}^2/\text{atome}$$

• For energies above 1 GeV, a screening effect happens and becomes complete and thus $A = \frac{1}{2} \frac{7}{2} \left(7 \ln \frac{183}{1} + 1 \right) + \frac{7}{4} \frac{1}{4} + \frac{1}{4} \frac{1}{4} +$

$$\sigma_{paire} = 4\alpha r_e^2 Z^2 \left(\frac{\gamma}{9} \ln \frac{103}{Z^{1/3}} - \frac{1}{54} \right) \approx \frac{\gamma}{9} \cdot \frac{\gamma}{N_A} \cdot \frac{1}{X_0} \quad \text{cm}^2/\text{atome}$$

- The radiation length (en g/cm²) is $X_0 = A / \left(4\alpha N_a Z (Z+1) r_e^2 \ln \frac{138}{Z^{1/3}} \right)$
 - The cross section is independent of the photon energy for $E_{\gamma} > \sim 1$ GeV, only depends on the medium (X₀)
- The photon conversion probability per unit length is $w = N_A (\sigma_{paire}/A) \cdot \rho = \frac{7}{9} \cdot \frac{\rho}{X_o}$
 - The mean free path for a photon before it converts $\lambda_{paire} = 1/w$
 - If we put X₀ back into units of cm, we have

e
$$w = \frac{7}{9} \cdot \frac{1}{X_0}$$
, donc $\lambda_{paire} = \frac{9}{7} X_0 \approx X_0$

EM showers

- At high energy ($E_{\gamma} \gtrsim 1$ GeV),
 - Electrons loose their energy almost exclusively through Bremsstralung
 - Photons loose their energy by pair production
 - The combination of these two effects leads to the creation of EM showers when an electron or photon enters a heavy medium

- The shower development is a statistical process
 - The rigorous calculation is done by Monte Carlo simulation
 - Nonetheless, a simple model describes well, on average, this process
 - An electron with E>E_C looses energy E/2 by Bremsstrahlung after having traversed a thickness X₀
 - A photon with $E > E_C$ produces an e^+e^- pair after having traversed a distance X_0
 - Electrons with *E*<*E_C* loose all their energy by ionisation (the Bremsstrahlung loss is neglected)
 - Ionisation energy loss is neglected for electrons with $E > E_C$

EM showers

- Starting from a photon with energy E₀ : after a distance
 - 1X₀: production of 2 particles: e^+ et e^- each with an energy $E_0/2$
 - 2X₀: Bremsstrahlung: 4 particles: $\gamma e^+ \gamma e^-$ each with an energy $E_0/4$
 - ... etc. After each radiation length, have twice as many particles, each with half the energy. After tX_0
 - $E(t) = E_0/N(t) = E_0 / 2^t$
 - The shower development stops when $E(t) = E_c$
 - $t_{max} = ln(E_0/E_C)/ln(2)$

STRONG INTERACTION OF HADRONS

Strong interaction of hadrons

- The strong interaction between hadrons and nuclei is very short-ranged (~10⁻¹⁵m)
 - Interactions very rare relative to EM processes
 - But for high energy hadrons (E > 1 GeV) and when the medium is dense: strong interactions dominate
- Consider the total cross section as: $\sigma_{total} = \sigma_{elastic} + \sigma_{inelastic}$
- In elastic processes (dominant at low energy)
 - The hadron remains intact after the interaction

Strong interaction of hadrons

- In inelastic interactions
 - Secondary hadrons are produced
 - e.g. p+N → p,n,π, K,..
 - We cannot identify the incoming hadron after the interaction
 - We say it has been 'absorbed'
 - The absorption probability per unit length

$$w_a = N_A(\sigma_a/A) \cdot \rho = N_A(\sigma_{in\acute{e}lastique}/A) \cdot \rho$$
 cm

• The nuclear absorbtion lenth (mean free path)

$$I_a = 1/w_a = A/(W_A rs_{inelastiqe}) \text{ cm}$$
 ou $I_a r = 1/w_a = A/(W_A s_{inelastiqe}) \text{g} \propto \text{m}^2$

The nuclear interaction length

 $\lambda_{nucl} = A / (N_A \rho \sigma_{totale}) \text{ cm} \quad \text{ou} \quad \lambda_{nucl} \rho = A / (N_A \sigma_{totale}) \text{ g} \cdot \text{cm}^{-2}$

- Cross sections depend on energy and type of hadrons
 - At low energy, the energy dependence is complicated because of resonances
 - At high energy
 - σ_{totale} depends on $ln(E_{cm}^2) = ln(s)$
 - The mean number of secondary hadrons produced in an interaction depends on E in the same way
 - ~90% or secondary hadrons are pions (π)

Hadronic showers

- A hadronic shower is initiated by the secondary hadrons produced in the inelastic interactions of a high energy incident hadron
 - On average, half of the energy of the incident hadron is transferred to the secondary hadrons, the rest is shared between slow pions and other processes
- The longitudinal development of a hadronic shower is characterised by the nuclear absorption length (λ_{nucl})
 - As $\lambda_{nucl} >> X_0$ hadronic showers form deeper into the material than EM showers
 - Secondary hadrons have larger transverse momentum (transverse to the direction of the incident hadron) than found in EM showers
 - The size of hadronic showers will thus be larger
- The fluctuations during the development of hadronic showers is large
 - The energy measurement of a hadron is less precise than that of an electron/photon

Strong interaction of hadrons

Neutrons

- The neutron penetrates far as it only sees the strong force
- High energy neutrons (E >~100 MeV) interact in the medium like charged hadrons, result in a hadronic shower

CHERENKOV RADIATION

- A charged particle of velocity v traverses a medium of refraction index n and polarises the atoms along its path
 - These atoms become electric dipoles
 - These dipoles emit EM radiation
- If the speed of the particle doesn't exceed the speed of light in the medium (v<c/n)
 - The dipole radiation from the two sides of the path cancel
- If instead v > c/n
 - The downstream material cannot be polarised
 - The field created by the particle propagates less fast than the particle itself
 - Resulting in a net radiation emission
 - This is the Cherenkov effect
 - Analogy: a plane breaking Mach 1

- The angle of the net radiation emitted is determined by the speed of the particle (and the refactive index of the medium)
- Simple geometric calculation

- The exact calculation takes into account the recoil of the charged particle
 - Can be computed using classical electrodynamics

$$\cos\theta_c = \frac{1}{n\beta} + \frac{\hbar k}{2p} \left(1 - \frac{1}{n^2}\right),$$

- Where $\hbar k$ is the momentum of the photon, and p is the momentum of the charged particle
- Cherenkov radiation happens in all transparent mediums
- Energy loss due to Cherenkov radiation is negligeable
 - Scintillation is 100 times more intense
- Radiation threshold is β>1/n
 - At the threshold, the radiation is emitted in the direction of the particule ($\theta_c = 0$)
- Can exploit these different thresholds to distinguish particles with the same momentum (p) but different masses
 - The mass threshold is given bs

$$m_{th} = \frac{p\sqrt{1-\beta_{th}^2}}{\beta_{th}} = p\sqrt{n^2-1}$$

Particles heavier than m_{th} will not emit light

Cherenkov radiation due to fission

Cherenkov Detectors

- Differential counters
 - Can use Cherenkov light to only be sensitive to particles in a particular range of energy (or more precisely range of speeds)
 - β_{min} is determined by the threshold 1/n
 - β_{max} is given by the internal reflection between a radiator and a light guide
 - The reflection angle increases with the speed of the particle
 - If the speed is above a certain threshold, the reflection angle is larger than the critical reflection angle needed to propagate along the wave guide
 - Examples
 - Often use diamond (n=2.42) as radiator
 - $\beta_{min}\,{\sim}0.413$ and $\beta_{max}\,{\sim}0.454$
 - Gives a selection window of $\Delta\beta$ ~0.04 i.e. $\Delta\beta/\beta$ ~10%
 - The best differential counters can get a resolution as good as $\Delta\beta/\beta$ ~10^{-7}

Cherenkov Detectors

- Annular imaging
 - RICH (ring imagine Cherenkov)
 - The goal is to detect the cone of light emitted by a particle, to identify the type of particle and its speed

Muon in superKamiokande

IONISATION DETECTORS

- These detectors pick up the presence of a charged particle by measuring the total charge of electrons or ions produced by the ionisation of the medium traversed
 - This medium could be a gas, a liquid or a solid
- In order to pick up the electrons or ions before they recombine into neutral atoms, need an electric field that causes them to drift towards electrodes
- The drift charges induce a current on the electrodes
- These currents are detected by amplifiers that produce a measurable electrical signal
- The mean number of electron-ion pairs produced is given by the Bethe-Block formula
 - $N_l = -dE/dx d/W$
 - Where *d* is the thickness of the detector, W is the mean energy needed to create an electron-ion pair
 - In a gas: W ~ 30 eV
- The total charge picked up by the amplifier depends on many technical factors, in particular the strength of the applied electric field

Operational regions of an ionisation detector

• Depend on the voltage (i.e. the electric field applied)

- Recombination region
 - When the electric field between the electrodes is weak

- Only a small fraction of the ionisation charge is picked up by the amplifiers
- Use: mostly for calibrating other radiation detectors
 - e.g. <u>http://rpd.oxfordjournals.org/content/9/2/123.short</u>
- Ionisation region
 - When the voltage is high enough to stop re-combinations, most of the ionisation charges produced drift towards the electrodes
 - The signal obtained reflects the total ionisation charge
 - Disadvantage: signal is still quite weak as no amplification of the charge inside the active medium
 - Need to use special low noise amplifiers
 - Advantage: excellent energy resolution and very good linearity
 - Use: ionisation chambers
 - e.g. liquid Ar chambers, Silicon/Germanium detectors

Proportional region

- If the applied field is sufficiently high (E ~ 10⁴ V/cm) the electrons will be accelerated by the electric field and gain enough energy to produce secondary ionisations
- The secondary ionisation probability per unit length (α) is constant for a given electric field
- The total number of ionised atoms is thus proportional to the initial number of ionisations
 - $N_{total} = N_0 e^{\alpha d}$
- The amplification factor (often called gain): M = $e^{\alpha d} \sim 10^4 10^8$
- With a gas, we can get a big amplification factor
 - Most detectors operating in this region are thus gas detectors
- Advantage: no need for low noise electronics
- Disadvantage: energy precision isn't as good because of fluctuations of the amplification process (sensitivity to the value of M)
 - These fluctuations are due to variations of 'control parameters': HV, temperature,...
- Often use these detectors to measure the position of particles
 - Drift chambers
 - Proportional wire chambers
- As the particles loose very little energy in the gas, a wire drift chamber is ideal for measuring the tracks of charged particles in front of a calorimeter whose goal is to measure their energy (minimal interference)

Examples of proportional region detector configurations

Recombination _____region _____lanization

region

roportiona

region

ш

1015

1012

106

ALPHA 10

5 109

*

Limited propartionality Geiger-Müller

0 200 400 600 800 1000 1200 1400 1600

region

x ¦ x

Continuous Discharge region

Ionisation detectors

• Examples of proportional region detector configurations

Geiger region

- If we increase the field even further, the energy of the electrons from the primary ionisations increase rapidly and they excite or ionise immediately other atoms
- An electron avalanche is produced
- A large number of photons are produced during the atomic de-excitation process
- These photons trigger themselves ionisation avalanches through the photoelectric effect, along the anode wire where the electric field is strongest
- These avalanches happen very quickly and an audible discharge is heard
- That's the principle of the Geiger counter
- The discharge only stops when the total charge due to the positive ions around the anode decreases the electric field enough that the multiplication process cannot continue
- The detector will not be sensitive to new ionisation until the ions have drifted far enough away from the anode
 - That's the reason for the dead-time in Geiger counters
- During a discharge, the current on the anode is saturated
 - The amplification of the signal is independent of the primary charge
- Disadvantage: cannot measure the energy
- Advantage: can measure radiation rate, even for very low radiation levels

• Geiger region: examples

57

BACKUP SLIDES

Full Detectors: CMS

Full Detectors: CDF

Full Detectors: ALICE

- Dans certains matériaux transparents
 - Une particule chargée excite un atome
 - L'atome se désexcite en émettent une petite quantité de lumière
 - Le matière émet une petite quantité de lumière (fluorescence)
 - Oui comme les ampoules (<u>http://fr.wikipedia.org/wiki/Tube_fluorescent#Techniques</u>)
 - Ces photons peuvent être détectés par un détecteur photosensible si le milieu est transparent pour au moins partie des longueur d'ondes émissent
 - Exemples de matériaux qui remplissent ces conditions de transparence
 - Scintillateurs organiques (plastique, liquide, cristal)
 - Etats excités des molécules sont la source de fluorescence
 - Scintillateurs inorganiques (cristaux): NaI(Ti), PbWO4, BGO,...
 - C'est les états intermédiaires d'impuretés qui sont la source de lumière fluorescente

- Caractéristiques de scintillateurs
 - · Le temps de montée ('rising time') et la constante de temps
 - Les scintillateurs sont très rapides
 - Le temps de montée est de ~1 ns
 - Plus rapides que les détecteurs d'ionisation
 - Le nombre de photons après le maximum suit une loi exponentielle avec une constante beaucoup plus grande ~100 ns
 - · L'efficacité: l'énergie nécessaire pour créer un photon
 - Nal(Ti): 20 eV
 - Plastique: 100 eV
 - BGO: 200 eV
 - Linéarité de la réponse
 - dN/dE indépendante de E
 - Sauf à très basse énergie
- Permet d'utiliser les scintillateurs
 - Dans les calorimètres
 - Dans le 'trigger'

Fig.] Simple exponential decay of fluorescent radiation. The rise time is usually much faster than the decay time

- Caractéristiques de scintillateurs (suite)
 - Le spectre des photons est étroit
 - Plastique: 423mn
 - Nal(Ti): 413nm
 - BGO: 480nm
 - Le photo-détecteur (souvent photomultiplicateur) doit être adapté au matériau utilisé
 - Parfois un dopant est ajouté pour décaler la longueur d'onde pour qu'elle soit mieux adaptée au photomultiplicateur
 - Le dopant absorbe les photons de scintillation et réémet rapidement (~1ns) des photons avec une autre longueur d'onde
 - La longueur d'atténuation
 - Les photons doivent traverser le scintillateur pour arriver aux éléments photosensibles
 - Certains photons seront réabsorbés en route
 - Le nombre de photons non-absorbés en fonction de la distance parcourue suit une loi exponentielle $N(x) = N_0 e^{-x/\lambda}$ ou λ est la longueur d'atténuation
 - En général λ ~1m
 - On peut donc construire de grands détecteurs

- Collection des photons
 - But est de réduire au minimum la perte des photons dans le milieu
 - Pertes par absorption
 - Pertes par fuite
 - On utilise
 - Réflexions internes
 - Réflexion totale: $\sin\theta_c = n_{air} / n_{scint}$ alors $\theta_c \sim 39$ degrés pour un plastique
 - Réflexion par miroir: paroi le plus lisse possible
 - On utilise de la colle est du gel pour joindre les éléments et réduire la réflexion
 - Des guides de lumière sont utilisés pour adapter la géométrie ou transporter la lumière
 - On peut aussi les utiliser pour faire un shift du spectre ('wave length shifters')

- Les photomultiplicateurs
 - But: convertir les photons de scintillation en un signal électrique
 - Qui peut être traité électroniquement (amplification,..)
 - · Le principe physique est l'effet photo-électrique
 - Produit pas un photocathode
 - En général une fine couche d'un alliage métallique alcalin
 - L'efficacité quantique (η): le nombres de photoélectrons créés par photon incident
 - Typiquement: η ~ 0.25
 - Dépend de la longueur d'onde du photon

Plot du chip CCD du Hubble Space Telescope's Wide Field and Planetary Camera 2.

- Les photomultiplicateurs (suite)
 - Derrière le photocathode se trouve un série (10-14) d'électrodes dites 'dynodes' formés d'un alliage particulier (souvent du CuBe) portés à des potentiels électriques croissants
 - Les photoélectrons émis par le photocathode sont accélérés et focalisés sur la première dynode
 - Ils arrachent 2-5 électrons par photoélectron
 - Amplification du signal
 - Et ainsi de suite par dynode
 - Gain total peut atteindre 10⁷ après 14 dynodes
- L'efficacité d'un détecteur à scintillation dépend donc de plusieurs facteurs
 Photomultiplier Tube
 - Longueur d'atténuation
 - Perte des photons
 - Efficacité quantique

Semiconductor detectors

- C'est un type particulier de détecteurs à ionisation
- Une particule chargée traversant le milieu
 - Ne va pas exciter ou ioniser le milieu
 - Mais va créer des paires d'électrons-trous quasi-libres dans la bande passante
- Il faut seulement 3 eV pour créer une paire
 - Dans un gaz il faut 30 eV pour une ionisation
- Les charges crées peuvent être détectées en appliquant un champ électrique
- Avantages
 - Très bonne résolution en énergie
 - Compacte comme c'est un solide
 - Idéal pour un traceur
 - Précis (micro-bandes ou pixels)
 - Mince (petit X₀ et λ₀)
 - Rapide
- Désavantages
 - Cher
 - Fragile
 - Performance se dégrade avec l'irradiation

Semiconductor detectors

- La structure de base d'un détecteur semi-conducteur est une jonction biaisée inversement
- Quand 2 semi-conducteurs de types différents (n ou p) entrent en contact
 - Sous effet de diffusion une zone sans porteurs de charge est crée au point de contact
 - Forme une zone de déplétion à la jonction
 - Une barrière de potentiel se forme dans cette zone
 - Empêche la conduction entre les deux semi-conducteurs
 - L'application d'une tension inverse (V_n>V_p) élargi la zone de déplétion
 - Augmente l'efficacité de détection
 - C'est la base aussi des diodes

Semiconductor detectors

Jonction PN sans tension (en équilibre)

Jonction PN en polarisation inverse
- Les caractéristiques des détecteurs semi-conducteurs
 - Efficacité
 - Linéarité
 - Courant de fuite
 - Temps de montée
- Efficacité
 - ~3 eV sont nécessaires pour créer une paire d'électrons-trous
 - 10 fois plus sensible qu'un gaz
 - 100 fois plus sensible qu'un scintillateur
 - Donc meilleure résolution en énergie comme plus d'ionisations primaires donc moins de fluctuations de charge
- Linéarité
 - Seuil de perte d'énergie est très faible
 - Donc bonne linéarité
 - Pour des particules fortement ionisées (ions lourds, Pb au LHC)
 - L'efficacité de collection est affectée par l'effet de charge spatiale
 - Les charges dérivent moins vite, donc plus de recombinaisons (le champ E est diminué)

- Courant de fuite
 - Même si la jonction est en polarisation inverse
 - Petit courant (~ ηA) à travers la jonction
 - Le courant de fuite viens des mouvements des porteurs de charge minoritaires, des effets des impuretés et des effets de surface
- Temps de montée
 - Très rapides!
 - Le temps de montée des charges induites est de l'ordre du ~ns

- Applications
 - Pour mesurer l'énergie
 - Excellente résolution
 - Mais limité dans l'épaisseur de la zone de déplétion (~mm) et la taille maximale des semi-conducteurs qu'on peut produire (~10 cm²)
 - Pour mesurer la position de particules chargées
 - Profite des développements de la technologie microélectronique pour fabriquer des formes précises sur le cristal
 - Détecteurs à microbandes (e.g. ATLAS SCT)
 - Détecteurs à pixels (utilsés pour la première fois au LHC)
 - CCD ('charge coupled device')

Cherenkov Detectors

- But
 - Détecter et mesurer l'énergie des particules par absorption
 - Une segmentation spatiale pour savoir où est la particule incidente
- Principe d'opération
 - · La particule incidente initie une gerbe de particules dans le détecteur
 - La forme, taille et composition de la gerbe dépend de la particule incidente et des matériaux utilisés
 - L'énergie est déposée sous forme de
 - Chaleur
 - Ionisation
 - Excitation
 - Radiation de Cherenkov
 - ...

Shower of Particles

- Différents types de détecteurs utilisent ces signaux de manière différentes
- Le signal obtenu dépend de l'énergie totale déposée par la particule dans le milieu actif du détecteur

- Peuvent être construits sur presque tout l'angle solide autour de la collision (4π)
- Mesurent l'énergie de particules chargées et neutres
 - Pour autant qu'elles interagissent sous la force EM ou forte
- Une segmentation en profondeur permet une séparation entre les hadrons et les particules qui n'interagissent qu'avec la force EM
 - Souvent 2 calorimètres
 - Calorimètre EM
 - Calorimètre hadronique

- · Les gerbes EM (voire sous-chapitre précédent) sont caractérisées par
 - La longueur de radiation X₀
 - L'énergie critique: E_c
 - La taille transverse
 - Rayon de Molière: R_M = 21 MeV / E_C

ATLAS

 Les gerbes hadroniques (voire sous-chapitre précédent) sont caractérisées par

- · Les calorimètres hadroniques sont souvent des 'sampling calorimeters'
 - Alternance de couches actives et de matière passive
 - On ne mesure qu'une fraction de l'énergie totale des particules
 - Calibration nécessaire pour compenser pour l'énergie absorbée par la matière passive

Hadronic showers

- Dans une collision produisant des hadrons
 - Prenons l'exemple d'une interaction produisant une paire de quarks
 - La force forte est forte
 - Production non-pas d'un seul hadron mais d'une gerbe de hadrons
 - Les hadrons chargés seront observés dans le traceur
 - Le hadrons neutres et chargés vont former des gerbes hadroniques dans le calorimètre
 - On doit alors utiliser des algorithmes compliqués pour reconstruire au mieux quelles dépôts d'énergie viennent de la même gerbe de hadrons ou de la même particule initiale
 - 'jet algorithms' (MidPoint, AntiKt,..)

